Dense sphere packings from optimized correlation functions.
نویسندگان
چکیده
Elementary smooth functions (beyond contact) are employed to construct pair correlation functions that mimic jammed disordered sphere packings. Using the g_{2} -invariant optimization method of Torquato and Stillinger [J. Phys. Chem. B 106, 8354 (2002)], parameters in these functions are optimized under necessary realizability conditions to maximize the packing fraction varphi and average number of contacts per sphere Z . A pair correlation function that incorporates the salient features of a disordered packing and that is smooth beyond contact is shown to permit a varphi of 0.6850: this value represents a 45% reduction in the difference between the maximum for congruent hard spheres in three dimensions, pi/sqrt[18] approximately 0.7405 and 0.64, the approximate fraction associated with maximally random jammed packings in three dimensions. We show that, surprisingly, the continued addition of elementary functions consisting of smooth sinusoids decaying as r;{-4} permits packing fractions approaching pi/sqrt[18] . A translational order metric is used to discriminate between degrees of order in the packings presented. We find that to achieve higher packing fractions, the degree of order must increase, which is consistent with the results of a previous study [Torquato, Phys. Rev. Lett. 84, 2064 (2000)].
منابع مشابه
Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations.
In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding sta...
متن کاملDensest local sphere-packing diversity: general concepts and application to two dimensions.
The densest local packings of N identical nonoverlapping spheres within a radius Rmin(N) of a fixed central sphere of the same size are obtained using a nonlinear programming method operating in conjunction with a stochastic search of configuration space. The knowledge of Rmin(N) in d-dimensional Euclidean space Rd allows for the construction both of a realizability condition for pair-correlati...
متن کاملCharacterization of maximally random jammed sphere packings: Voronoi correlation functions.
We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to...
متن کاملDensest local sphere-packing diversity. II. Application to three dimensions.
The densest local packings of N three-dimensional identical nonoverlapping spheres within a radius R(min)(N) of a fixed central sphere of the same size are obtained for selected values of N up to N=1054. In the predecessor to this paper [A. B. Hopkins, F. H. Stillinger, and S. Torquato, Phys. Rev. E 81, 041305 (2010)], we described our method for finding the putative densest packings of N spher...
متن کاملDensity Doubling, Double-circulants, and New Sphere Packings
New nonlattice sphere packings in dimensions 20, 22, and 44–47 that are denser than the best previously known sphere packings were recently discovered. We extend these results, showing that the density of many sphere packings in dimensions just below a power of 2 can be doubled using orthogonal binary codes. This produces new dense sphere packings in Rn for n = 25, 26, . . . , 31 and 55, 56, . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2009